Measurement, Density Matrix and Decoherence

Schrodingers cat in quantum mechanics is an illustration for the property of quantum
mechanical objects that they may be in undecided states, represented by the cat being
simultaneously dead and alive. These are called examples of coherence or quantum
interference.

When an object is much bigger than a quantum particle, however, we encounter it
as a classical object, the cat is either dead or alive, being in each of these two states
with some probability. The question now arises, how this difference between a quan-
tum object and a classical object arises. Alternatively we may ask, how the undecided

quantum state changes into a decided (incoherent) state, when the quantum object
interacts with the (large) measurement apparatus, a classical environment.

The expectation value < A > of an observable (or equivalently an operator) A, when
the system is in a state defined by the wavefunction |¢) >, is written as

< A>=< Al > (1)

Defining now the density matrix p for a pure state as

p= [ ><| (2)

we may rewrite the expectation value of A with the help of the trace-operation as

< A>=Tr(pA) (3)
where
Tr A=Y <n|An> (4)
with |n > being an arbitrary complete orthonormal set.
A generalization of the density-matrix may be introduced when one has a number of

systems or particles being in different states [¢; >,7 = 1..N, with probabilities p;. The
generalized density matrix then can be written as

P:Zpi i >< 1y (5)

again with possibility to take expectation values as in eq.(3). The initial eq.(2) ob-
viously is a special case of this more general density matrix p (also called statistical
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operator), when only one p; = 1 is nonzero. This density-matrix is also called the
density-matrix for mixed states. While for a pure state we have Tr(p?) = 1, a mixed
state is defined by Tr(p?) < 1.

Now consider two systems, 1 and 2, for example 1 being a particle and 2 being the
whole environment. When these systems are completely uncoupled one may define a
product wavefunction

[V >= |t > [¢pp > (6)

Let us represent the wavefunctions as an expansion of an orthonormal set

> = D chlun > (7)
o > = > |w, > (8)

where index 1,2 represent the two systems, resulting in

> = O enlun > cplwm >), (9)

= chm|un > |wy, > (10)

n,m

with expansion coefficients ¢, ,,. This holds for the two systems 1 and 2 eq.(9) being
uncoupled. (Note, however, that the form (10) still represents a pure state but in prin-
ciple is more general than (9)!)

The density-matrix of the uncoupled systems eq.(9)+(10) is by definition

P=DD i mlun > Wi >< tn| < Wi (11)

k, n,m

We now assume that system 2 (the environment) is so large that we cannot obtain
sufficient information. In other words we must take an expectation value over that
sub-system 2 to obtain a reduced density-matrix p;

p1="Tra(p) =D <we| YD crich mlune > Jwy >< p| < W [w0r > (12)

k,l nym

Note that < w,||w, >= 4, etc.



This gives explicitly

pr="Tra(p) =Y (3 sy, )un >< uy| (13)

k,n

Alternatively we may assume that the two systems are coupled, as the environment
2 may influence the particle 1. A simple example for such a coupling is the following
wavefunction

> = Y cilu, > v, > (14)

where each eigenfunction |u, > of the 1 -system is coupled to the eigenfunction |v,, >
of the 2 -system.

Performing the same operation as above for the coupled system (14), one obtains the
density-matrix

p=0>< Y| =D chenun > [vn >< Un| < vy (15)

n,m

Taking again the trace over the environment (system 2) one has

p1=Tra(p) =D <] D> chcnlun > vy >< Up| < O]y > (16)

n,m

This gives explicitly

p1="Trs(p) = crerlu, >< u,| (17)

Comparing the reduced density-matrices for the uncoupled case (13) with the coupled
case (17), we see that in the uncoupled case the density matrix has off-diagonal terms
k # n, while in the case where the environment is coupled to the system 1 under consi-
deration, the density matrix has diagonal terms only. This coupled case corresponds to
a statistical average (5) which means a pure addition of probabilities like for a classical
system: The cat is either dead or alive, not both anymore at the same time.

A slightly more general model than eq.(14) finally may be defined as follows. Assu-
me that we have a quantum particle S1 with possible eigenstates |u, >,n = 1..N,
interacting in the measurement process with an external system S2a described by an
equivalent number of degrees of freedom |v, >,n = 1..N, which again is embedded
into an even larger environment S2b with |w,, >,m = 1..M, and a very large num-
ber M >> N of degrees of freedom. This model may be interpreted as follows. The



external system S2 represents a measuring instrument which may show macroscopi-
cally readable values |v,, > for the corresponding quantum-states |u, >. An example
may be the Stern-Gerlach experiment, where the two possible eigenvalues spin-up or
spin-down can be observed macroscopically by the deflection of the original electron
beam S1 into two different spots in system S2a. In principle it would be sufficient,
that the states |v, > would not overlap. For simplicity of the model we assume here
directly that they form a complete orthonormal set. Since this does not yet descri-
be all possible degrees of freedom of the instrument, those other degrees of freedom
not directly coupling to the eigenvalues of system S1 are expressed by the states of S2b.

A pure state |1 > of this combined system now may be defined by our model as

> = Y culun > o, > dp|wy, > (18)
= chdm|un > |v, > |wy, > (19)

Comparing this with eqs.(14) and (10) we recover the coupling between S1 and S2a,
and the uncoupled product between the systems S2b and S2a+S1, as d,, does not de-
pend on n.

The density-matrix becomes explicitly

p = [¥>< (20)
Zchc,tdmdﬂun > vy > Wy >< ug| < vl < wyl (21)
nm k,l

Taking the trace first over S2b (or |ws > ) gives as in eq.(12) the reduced density-matrix

pr = Try(p) (22)
= Y <w| DD encrdnd]un > vy > W >< ug| < v < wil|ws > (23)
s nm k,l
= (Do dod)) D cacklun > |vn >< ug| < vy (24)
S n,k

The second trace over S2a (or |v, >) just like in eq.(16) leads to

p2 = Try(p) (25)
Z < vr|(z dsd?) chcmun > v, >< ug| < vgllv, > (26)

T s n,k
= O ddd)d erctuy >< uy| (27)
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And with Y, dsdi = 1 one has the final result

p2 = crerlu, >< u,| (28)

which is again a density matrix for a mixed state given in diagonal form, since its matrix
elements < uy|ps|u; > are nonzero only for [ = k. The coefficients c’c, = |c.|* = p, are
the probabilities, to find system S1 in state |u, > after it has undergone an interaction
with system S2=S2a+S2b, where S2 represents a measuring apparatus and/or a large
environment.

The unperturbed system, where there is no coupling from the environment, shows in-
terference or coherence between the possible states through the off-diagonal terms,
while the reduction to diagonal form of the density matrix occurs through coupling to
a (large) system which we can only treat by some averaging procedure as expressed
through the traces taken over that second system. This process is called decoherence
and marks the transition from the quantum-mechanical scale to classical scales.

As an example for such a decoherence-process, the scattering of a quantum particle
at a dust particle of diameter a can be described as (E. Joos, in J. Audretsch, editor,

Verschréankte Welt,Wiley-VCH 2002)

p(z,a’;t) = p(x,2",0) exp(—At(z — 2')?) (29)

with |z — 2’| the resolution of the microscope, and the localization rate A

~ 212 NV

A= a’k P (30)
in units of particles per time and scattering-area. Here k is the wavenumber of inco-
ming particles, a? the so-called scattering cross-section, Nv/V the flux-density of the
scattered particles. Quantitative examples are a dust-particle with @ = 10~°cm as scat-
terer for cosmic background radiation A ~ 10~%ecm=2s~!, sunlight A ~ 10" 7em 2571,
or molecules of the air A ~ 10™2¢m~2s~!. This indicates that in the latter two cases
initially existing coherence is destroyed extremely fast. Whether an object shows quan-
tum interferences or not, therefore, is a quantitative question. This also explains, why

Schrodingers cat would behave as a classical object, as expected.

(H. Miiller-Krumbhaar; for more details see e.g. F. Schwabl, ”Quantum Mechanics”,
Springer-Verlag, Berlin, New York, 2007)



